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Based on the transfer matrix method, a detailed theoretical and numerical study on double-phase-shifted fiber Bragg 

grating (FBG) is investigated. Temporal responses of the double-phase-shifted FBG to optical pulse are analyzed and 

the influence of the two phase-shifts’ position on the reflected output pulse is evaluated. Results demonstrate that very 

different temporal pulse waveforms can be achieved by adjusting the length ratio (α=L2/L1). Specifically, a trans-

form-limited Gaussian input optical pulse can be shaped into flat-top square pulse (α=1.81) or two identical optical 

pulse sequences (α=1.93).  
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Pulses with the time scales of picosecond and femtosec-
ond have attracted considerable attention in many appli-
cations. The mode-locked lasers are by far the most 
common sources of optical pulses. But the temporal 
shapes generated by mode-locked lasers are typically 
Sech2 or Gaussian style, which are unsuitable for some 
special applications[1]. In order to obtain a customized 
optical pulse waveform, pulse shaping and processing 
technologies are indispensable[2,3]. The well-known ap-
proach is the 4f Fourier transform setup[4], in which an 
appropriately designed amplitude or phase mask is used 
to reshape the spectrum of incident pulse. However, de-
vices employed by the 4f system are bulky, lossy, and 
expensive. This has prompted recent efforts on the im-
plementation of fiber-based optical shaping elements[5,6]. 
For example, shaping filters based on fiber Bragg grat-
ing[7,8], superstructured Bragg gratings[9] or long-period- 
grating co-directional coupler[10,11] have been demon-
strated. In this paper, we focus on investigating the opti-
cal pulse shaping capabilities of a double-phase-shift 
fiber Bragg grating (FBG). By properly locating the two 
phase-shifts, different output pulse shapes, including 
flat-top square pulse and two identical optical pulse se-
quences, can be obtained flexibly.  

Fig.1 shows a schematic diagram of the proposed op-
tical pulse shaper. A double-phase-shifted FBG can be 
modelled by combing the transfer matrix method with 
the coupled-mode theory[12]. By dividing the dou-
ble-phase-shifted FBG into three uniform FBGs and two 
phase-shifted elements, the transfer matrix related to the 
forward propagating mode ( R ) and the backward 

propagating mode ( S ) can be expressed as: 
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where (0)R , (0)S and 1 2(2 )R L L , 1 2(2 )S L L are 

the field amplitudes at the input end ( 0z  ) and the 
output end ( 1 22z L L  ), respectively.   represents 

the phase shift perturbation in the grating: 

exp( j / 2) 0

0 exp( j / 2)




⎡ ⎤
 ⎢ ⎥⎣ ⎦

 .                    (2) 

mT  ( 1,2m  ) represents the transfer matrix of uniform 

FBG with length mL , which can be obtained by solving 

the coupled-mode equation[13]:  
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where eff

π

n


   is the grating coupling coefficient, 

effn  is refractive index modulation depth,   is the 

light wavelength; π /    is the mismatch factor, 
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 is the mode propagation constant,  is the grating 

period; 2 2    and j 1  . 

 

 

Fig.1 Optical pulse shaping based on a dou-
ble-phase-shifted fiber Bragg grating 

 
Then, substituting the initial condition (0) 1R   and 

1 2(2 ) 0S L L   into Eq.(1), the transmission coefficient 

111 / T  and reflection coefficient 21 11/r T T  of the 
double-phase-shifted FBG can be obtained correspond-
ingly. Thus, if an optical pulse in ( )A t  with spectral re-
sponse in ( )A   is input, the temporal waveform at the 
output port is the inverse Fourier transform of the prod-
uct of input spectrum in ( )A   and the grating’s reflec-
tion spectrum ( )r  :  

 out in( ) ( ) ( ) exp( j )dA t A r t    ∫ .            (4) 

In the following, we assume the grating to be inscribed 
into conventional SMF-28 single-mode fiber with the pa-
rameters: phase shift perturbation π  , grating length 
L1=1 mm, 2 1L L   ( is the length ratio coefficient), 
refractive index modulation depth 4

eff 5 10n   and the 
grating period 532  nm so as to make the Bragg 
resonance wavelength at 1 550 nm.  

Firstly, the spectral responses of reflection amplitude 
r  and phase angle arg( )r of the double-phase-shifted 

FBG are numerically analyzed. Compared with the uni-
form FBG with the same length, two resonance notches 
and significant phase angle variations are introduced by 
the two phase-shifts, as shown in Fig.2. And the length 
ratio coefficient (

2 1
/L L  ) plays an important influence 

on the spectral responses. As the length ratio coefficient 
increasing, the interval of two resonance notches de-
creases gradually. When 2  , the two resonance 
notches are merged into one notch. If the length ratio 
coefficient increases furthermore, the maximum depth of 
the central resonance notch cannot reach zero anymore.   
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Fig.2 Spectral responses of reflection amplitude 
(solid line) and phase angle (dotted line):(a) Uniform 
FBG; (b)-(e) Double-phase-shifted FBGs with length 
ratios of α=1.0, 1.5, 2.0, 2.5 
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Then, the optical pulse shaping capabilities of the 
double-phase-shifted FBG are investigated. When a 
transform-limited Gaussian pulse 2 2

0( ) exp( / )A t t    
with full-width at half maximum (FWHM) of 100 ps is 
input, the temporal waveform of the output pulse is nu-
merically simulated. Depending on the length ratio coef-
ficient ( 2 1/L L  ), very different pulse shapes can be 
obtained, as can be seen from Fig.3. When 2.5  , there 
is negligible waveform change except for a little time 
delay between output pulse (solid line) and the original 
input pulse (dotted line). The reason is that output pulse 
spectrum out ( )A   is approximately equal to the input 
pulse spectrum in ( )A    itself. However, by adjusting 
the length ratio coefficient to change positions of the two 
phase-shifts, different output pulse shapes can be ob-
tained flexibly. When the length ratio coefficient  de-
creases, two side-lobes appear and the output waveform 
is transformed into two identical optical pulse sequences 
for 1.93  . Specifically interesting, the two identical 
pulse sequences evolve into a nearly flat-top square pulse 
waveform for even lower length ratio ( 1.81  ). 

 

   
(a) 2.5                     (b) 2.0   

   
(c) 1.93                 (d) 1.81   

Fig.3 Pulse waveforms of output and input when the 
double-phase-shifted FBGs with different length ra-
tios  

 

In this paper, we numerically compare the amplitude 
and phase characteristics of double-phase-shifted FBG 
with those of uniform FBG. The pulse shaping capabili-
ties of double-phase-shifted FBG are confirmed. And a 
transform-limited Gaussian input optical pulse can be 
shaped into flat-top square pulse or two identical optical 
pulse sequences by properly setting the length ratio as 

2 1 1.81/L L  or 2 1 1.93/L L  , respectively. These re-
sults will open important new perspectives towards the 
implementation of compact and practical fiber-based 
optical pulse shaping.   
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